28 research outputs found

    Towards a set of agrosystem-specific cropland mapping methods to address the global cropland diversity

    Get PDF
    Accurate cropland information is of paramount importance for crop monitoring. This study compares five existing cropland mapping methodologies over five contrasting Joint Experiment for Crop Assessment and Monitoring (JECAM) sites of medium to large average field size using the time series of 7-day 250 m Moderate Resolution Imaging Spectroradiometer (MODIS) mean composites (red and near-infrared channels). Different strategies were devised to assess the accuracy of the classification methods: confusion matrices and derived accuracy indicators with and without equalizing class proportions, assessing the pairwise difference error rates and accounting for the spatial resolution bias. The robustness of the accuracy with respect to a reduction of the quantity of calibration data available was also assessed by a bootstrap approach in which the amount of training data was systematically reduced. Methods reached overall accuracies ranging from 85% to 95%, which demonstrates the ability of 250 m imagery to resolve fields down to 20 ha. Despite significantly different error rates, the site effect was found to persistently dominate the method effect. This was confirmed even after removing the share of the classification due to the spatial resolution of the satellite data (from 10% to 30%). This underlines the effect of other agrosystems characteristics such as cloudiness, crop diversity, and calendar on the ability to perform accurately. All methods have potential for large area cropland mapping as they provided accurate results with 20% of the calibration data, e.g. 2% of the study area in Ukraine. To better address the global cropland diversity, results advocate movement towards a set of cropland classification methods that could be applied regionally according to their respective performance in specific landscapes.Instituto de Clima y AguaFil: Waldner, François. Université catholique de Louvain. Earth and Life Institute - Environment, Croix du Sud; BelgicaFil: De Abelleyra, Diego. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Clima y Agua; ArgentinaFil: Veron, Santiago Ramón. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Clima y Agua; Argentina. Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Métodos Cuantitativos y Sistemas de Información; ArgentinaFil: Zhang, Miao. Chinese Academy of Science. Institute of Remote Sensing and Digital Earth; ChinaFil: Wu, Bingfang. Chinese Academy of Science. Institute of Remote Sensing and Digital Earth; ChinaFil: Plotnikov, Dmitry. Russian Academy of Sciences. Space Research Institute. Terrestrial Ecosystems Monitoring Laboratory; RusiaFil: Bartalev, Sergey. Russian Academy of Sciences. Space Research Institute. Terrestrial Ecosystems Monitoring Laboratory; RusiaFil: Lavreniuk, Mykola. Space Research Institute NAS and SSA. Department of Space Information Technologies; UcraniaFil: Skakun, Sergii. Space Research Institute NAS and SSA. Department of Space Information Technologies; Ucrania. University of Maryland. Department of Geographical Sciences; Estados UnidosFil: Kussul, Nataliia. Space Research Institute NAS and SSA. Department of Space Information Technologies; UcraniaFil: Le Maire, Guerric. UMR Eco&Sols, CIRAD; Francia. Empresa Brasileira de Pesquisa Agropecuária. Meio Ambiante; BrasilFil: Dupuy, Stéphane. Centre de Coopération Internationale en Recherche Agronomique pour le Développement. Territoires, Environnement, Télédétection et Information Spatiale; FranciaFil: Jarvis, Ian. Agriculture and Agri-Food Canada. Science and Technology Branch. Agri-Climate, Geomatics and Earth Observation; CanadáFil: Defourny, Pierre. Université Catholique de Louvain. Earth and Life Institute - Environment, Croix du Sud; Belgic

    Small satellites for space science : A COSPAR scientific roadmap

    Get PDF
    This is a COSPAR roadmap to advance the frontiers of science through innovation and international collaboration using small satellites. The world of small satellites is evolving quickly and an opportunity exists to leverage these developments to make scientific progress. In particular, the increasing availability of low-cost launch and commercially available hardware provides an opportunity to reduce the overall cost of science missions. This in turn should increase flight rates and encourage scientists to propose more innovative concepts, leading to scientific breakthroughs. Moreover, new computer technologies and methods are changing the way data are acquired, managed, and processed. The large data sets enabled by small satellites will require a new paradigm for scientific data analysis. In this roadmap we provide several examples of long-term scientific visions that could be enabled by the small satellite revolution. For the purpose of this report, the term “small satellite” is somewhat arbitrarily defined as a spacecraft with an upper mass limit in the range of a few hundred kilograms. The mass limit is less important than the processes used to build and launch these satellites. The goal of this roadmap is to encourage the space science community to leverage developments in the small satellite industry in order to increase flight rates, and change the way small science satellites are built and managed. Five recommendations are made; one each to the science community, to space industry, to space agencies, to policy makers, and finally, to COSPAR

    Global forest management data for 2015 at a 100 m resolution

    Get PDF
    Spatially explicit information on forest management at a global scale is critical for understanding the status of forests, for planning sustainable forest management and restoration, and conservation activities. Here, we produce the first reference data set and a prototype of a globally consistent forest management map with high spatial detail on the most prevalent forest management classes such as intact forests, managed forests with natural regeneration, planted forests, plantation forest (rotation up to 15 years), oil palm plantations, and agroforestry. We developed the reference dataset of 226 K unique locations through a series of expert and crowdsourcing campaigns using Geo-Wiki (https://www.geo-wiki.org/). We then combined the reference samples with time series from PROBA-V satellite imagery to create a global wall-to-wall map of forest management at a 100 m resolution for the year 2015, with forest management class accuracies ranging from 58% to 80%. The reference data set and the map present the status of forest ecosystems and can be used for investigating the value of forests for species, ecosystems and their services

    Assessment of forest cover in Russia by combining a wall-to-wall coarseresolution land-cover map with a sample of 30 m resolution forest maps

    No full text
    The process of gathering land cover information has evolved significantly over the last decade. In addition to this, current technical infrastructure allows for more rapid and efficient processing of large multi-temporal image databases at continental scale. But whereas the data availability and processing capabilities have increased, the production of dedicated land cover products with adequate accuracy is still a prerequisite for most users. Indeed, spatially explicit land cover information is important and does not exist for many regions. Our study focuses on the boreal Eurasia region for which limited land cover information is available at regional level.JRC.H.3-Forest Resources and Climat
    corecore